منابع مشابه
On Polar Legendre Polynomials
We introduce a new class of polynomials {Pn}, that we call polar Legendre polynomials, they appear as solutions of an inverse Gauss problem of equilibrium position of a field of forces with n + 1 unit masses. We study algebraic, differential and asymptotic properties of this class of polynomials, that are simultaneously orthogonal with respect to a differential operator and a discrete-continuou...
متن کاملWavelets Based on Legendre Polynomials
We construct an orthogonal wavelet basis for the interval using a linear combination of Legendre polynomial functions. The coefficients are taken as appropriate roots of Chebyshev polynomials of the second kind, as has been proposed in reference [1]. A multi-resolution analysis is implemented and illustrated with analytical data and real-life signals from turbulent flow fields.
متن کاملCongruences concerning Legendre Polynomials
Let p be an odd prime. In the paper, by using the properties of Legendre polynomials we prove some congruences for È p−1 2 k=0 2k k ¡ 2 m −k (mod p 2). In particular, we confirm several conjectures of Z.W. Sun. We also pose 13 conjectures on supercongruences.
متن کاملLegendre polynomials and supercongruences
Let p > 3 be a prime, and let Rp be the set of rational numbers whose denominator is not divisible by p. Let {Pn(x)} be the Legendre polynomials. In this paper we mainly show that for m,n, t ∈ Rp with m 6≡ 0 (mod p), P[ p 6 ](t) ≡ − (3 p ) p−1 ∑ x=0 (x3 − 3x + 2t p ) (mod p)
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1945
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1945-08330-x